
1

CS 188: Artificial Intelligence

Lectures 2 and 3: Search

Pieter Abbeel – UC Berkeley

Many slides from Dan Klein

Reminder

§  Only a very small fraction of AI is about making
computers play games intelligently

§  Recall: computer vision, natural language,
robotics, machine learning, computational
biology, etc.

§  That being said: games tend to provide relatively
simple example settings which are great to
illustrate concepts and learn about algorithms
which underlie many areas of AI

Reflex Agent

§  Choose action based on
current percept (and
maybe memory)

§  May have memory or a
model of the world’s
current state

§  Do not consider the
future consequences of
their actions

§  Act on how the world IS

§  Can a reflex agent be
rational?

A reflex agent for pacman

§  While(food left)
§  Sort the possible directions to move according

to the amount of food in each direction
§ Go in the direction with the largest amount of

food

Reflex agent

4 actions: move North, East,
South or West

A reflex agent for pacman (2)

§  While(food left)
§  Sort the possible directions to move according

to the amount of food in each direction
§ Go in the direction with the largest amount of

food

Reflex agent

A reflex agent for pacman (3)

§  While(food left)
§  Sort the possible directions to move according to the

amount of food in each direction
§  Go in the direction with the largest amount of food

§  But, if other options are available, exclude the direction we
just came from

Reflex agent

2

A reflex agent for pacman (4)

§  While(food left)
§  If can keep going in the current direction, do so
§  Otherwise:

§  Sort directions according to the amount of food
§  Go in the direction with the largest amount of food
§  But, if other options are available, exclude the direction we just

came from

Reflex agent

A reflex agent for pacman (5)

§  While(food left)
§  If can keep going in the current direction, do so
§  Otherwise:

§  Sort directions according to the amount of food
§  Go in the direction with the largest amount of food
§  But, if other options are available, exclude the direction we just

came from

Reflex agent

Reflex Agent

§  Choose action based on
current percept (and
maybe memory)

§  May have memory or a
model of the world’s
current state

§  Do not consider the future
consequences of their
actions

§  Act on how the world IS

§  Can a reflex agent be
rational?

§  Plan ahead
§  Ask “what if”
§  Decisions based on

(hypothesized)
consequences of
actions

§  Must have a model of
how the world evolves
in response to actions

§  Act on how the world
WOULD BE

Goal-based Agents Search Problems
§  A search problem consists of:

§  A state space

§  A successor function

§  A start state and a goal test

§  A solution is a sequence of actions (a plan)
which transforms the start state to a goal state

“N”,
1.0

“E”, 1.0

Example: Romania
§  State space:

§  Cities

§  Successor
function:
§  Go to adj city

with cost = dist

§  Start state:
§  Arad

§  Goal test:
§  Is state ==

Bucharest?

§  Solution?

What’s in a State Space?

§  Problem: Pathing
§  States: (x,y) location
§  Actions: NSEW
§  Successor: update location

only
§  Goal test: is (x,y)=END

§  Problem: Eat-All-Dots
§  States: {(x,y), dot booleans}
§  Actions: NSEW
§  Successor: update location

and possibly a dot boolean
§  Goal test: dots all false

The world state
specifies every
last detail of the
environment

A search state keeps only the details needed (abstraction)

3

State Space Graphs

§  State space graph: A
mathematical
representation of a
search problem
§  For every search problem,

there’s a corresponding
state space graph

§  The successor function is
represented by arcs

§  We can rarely build this
graph in memory (so
we don’t)

S

G

d

b

p q

c

e

h

a

f

r

Ridiculously tiny state space
graph for a tiny search problem

State Space Sizes?

§  Search Problem:
 Eat all of the food

§  Pacman positions:
 10 x 12 = 120

§  Food count: 30
§  Ghost positions: 12
§  Pacman facing:

 up, down, left, right

Search Trees

§  A search tree:
§  This is a “what if” tree of plans and outcomes
§  Start state at the root node
§  Children correspond to successors
§  Nodes contain states, correspond to PLANS to those states
§  For most problems, we can never actually build the whole tree

“E”,
1.0

“N”, 1.0

Another Search Tree

§  Search:
§  Expand out possible plans
§ Maintain a fringe of unexpanded plans
§  Try to expand as few tree nodes as possible

General Tree Search

§  Important ideas:
§  Fringe
§  Expansion
§  Exploration strategy

§  Main question: which fringe nodes to explore?

Detailed pseudocode
is in the book!

Example: Tree Search

S

G

d

b

p q

c

e

h

a

f

r

4

State Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in the
search tree is an
entire PATH in the
problem graph.

Review: Depth First (Tree) Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r q p

h
f d

b
a

c

e

r

Strategy: expand
deepest node first

Implementation:
Fringe is a LIFO
stack

Review: Breadth First (Tree) Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Strategy: expand
shallowest node first

Implementation:
Fringe is a FIFO
queue

Search Algorithm Properties

§  Complete? Guaranteed to find a solution if one exists?
§  Optimal? Guaranteed to find the least cost path?
§  Time complexity?
§  Space complexity?

Variables:

n Number of states in the problem
b The average branching factor B

(the average number of successors)
C* Cost of least cost solution
s Depth of the shallowest solution
m Max depth of the search tree

DFS

§  Infinite paths make DFS incomplete…
§  How can we fix this?

Algorithm Complete Optimal Time Space
DFS Depth First

Search
N N O(BLMAX) O(LMAX)

START

GOAL

a

b

N N Infinite Infinite

DFS
§  With cycle checking, DFS is complete.*

§  When is DFS optimal?

Algorithm Complete Optimal Time Space
DFS w/ Path

Checking Y N O(bm) O(bm)

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

* Or graph search – next lecture.

5

BFS

§  When is BFS optimal?

Algorithm Complete Optimal Time Space
DFS w/ Path

Checking

BFS

Y N O(bm) O(bm)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

Y N* O(bs+1) O(bs+1)

bs nodes

Comparisons

§  When will BFS outperform DFS?

§  When will DFS outperform BFS?

Iterative Deepening
Iterative deepening uses DFS as a subroutine:

1.  Do a DFS which only searches for paths of
length 1 or less.

2.  If “1” failed, do a DFS which only searches paths
of length 2 or less.

3.  If “2” failed, do a DFS which only searches paths
of length 3 or less.
 ….and so on.

Algorithm Complete Optimal Time Space
DFS w/ Path

Checking

BFS

ID

Y N O(bm) O(bm)

Y N* O(bs+1) O(bs+1)

Y N* O(bs+1) O(bs)

…
b

Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.
We will quickly cover an algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

8 1

8

2

3

1

4

4

15

1

3
2

2

Uniform Cost (Tree) Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

Expand cheapest node first:

Fringe is a priority queue
S

G

d

b

p q

c

e

h

a

f

r

3 9 1

16 4
11

5

7 13

8

10 11

17 11

0

6

3
9

1

1

2

8

8 1

15

1

2

Cost
contours

2

Priority Queue Refresher

pq.push(key, value) inserts (key, value) into the queue.

pq.pop() returns the key with the lowest value, and
removes it from the queue.

§  You can decrease a key’s priority by pushing it again
§  Unlike a regular queue, insertions aren’t constant time,

usually O(log n)

§  We’ll need priority queues for cost-sensitive search methods

§  A priority queue is a data structure in which you can insert and
retrieve (key, value) pairs with the following operations:

6

Uniform Cost (Tree) Search
Algorithm Complete Optimal Time (in nodes) Space
DFS w/ Path

Checking

BFS

UCS

Y N O(bm) O(bm)

…
b

C*/ε tiers

Y N O(bs+1) O(bs+1)

Y* Y O(bC*/ε) O(bC*/ε)

* UCS can fail if
actions can get
arbitrarily cheap

Uniform Cost Issues
§  Remember: explores

increasing cost contours

§  The good: UCS is
complete and optimal!

§  The bad:
§  Explores options in every
“direction”

§  No information about goal
location Start Goal

…

c ≤ 3

c ≤ 2
c ≤ 1

Uniform Cost Search Example Search Heuristics

§  Any estimate of how close a state is to a goal
§  Designed for a particular search problem
§  Examples: Manhattan distance, Euclidean distance

10

5
11.2

Example: Heuristic Function

h(x)

Best First / Greedy Search

§  Expand the node that seems closest…

§  What can go wrong?

7

Best First / Greedy Search
§  A common case:

§  Best-first takes you straight
to the (wrong) goal

§  Worst-case: like a badly-
guided DFS in the worst
case
§  Can explore everything
§  Can get stuck in loops if no

cycle checking

§  Like DFS in completeness
(finite states w/ cycle
checking)

…
b

…
b

Uniform Cost

Greedy

Combining UCS and Greedy
§  Uniform-cost orders by path cost, or backward cost g(n)
§  Best-first orders by goal proximity, or forward cost h(n)

§  A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

5

1
1

2

h=6 h=0
c

h=7

3

e h=1
1

Example: Teg Grenager

§  Should we stop when we enqueue a goal?

§  No: only stop when we dequeue a goal

When should A* terminate?

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0

h = 3

Is A* Optimal?

A

G S

1
3

h = 6

h = 0

5

h = 7

§  What went wrong?
§  Actual bad goal cost < estimated good goal cost
§  We need estimates to be less than actual costs!

Admissible Heuristics

§  A heuristic h is admissible (optimistic) if:

 where is the true cost to a nearest goal

§  Examples:

§  Coming up with admissible heuristics is most of
what’s involved in using A* in practice.

15 366

8

Optimality of A*: Blocking
Proof:
§  What could go wrong?
§  We’d have to have to pop a

suboptimal goal G off the
fringe before G*

§  This can’t happen:
§  Imagine a suboptimal

goal G is on the queue
§  Some node n which is a

subpath of G* must also
be on the fringe (why?)

§  n will be popped before G

…

Properties of A*

…
b

…
b

Uniform-Cost A*

UCS vs A* Contours

§  Uniform-cost expanded
in all directions

§  A* expands mainly
toward the goal, but
does hedge its bets to
ensure optimality

Start Goal

Start Goal

Example: Explored States with A*

Heuristic: manhattan distance ignoring walls

Comparison

Uniform Cost

Greedy

A star

Creating Admissible Heuristics
§  Most of the work in solving hard search problems optimally

is in coming up with admissible heuristics

§  Often, admissible heuristics are solutions to relaxed
problems, with new actions (“some cheating”) available

§  Inadmissible heuristics are often useful too (why?)

15
366

9

Example: 8 Puzzle

§  What are the states?
§  How many states?
§  What are the actions?
§  What states can I reach from the start state?
§  What should the costs be?

8 Puzzle I

§  Heuristic: Number of
tiles misplaced

§  Why is it admissible?

§  h(start) =

§  This is a relaxed-
problem heuristic

8 Average nodes expanded when
optimal path has length…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

8 Puzzle II
§  What if we had an

easier 8-puzzle where
any tile could slide any
direction at any time,
ignoring other tiles?

§  Total Manhattan
distance

§  Why admissible?

§  h(start) =

3 + 1 + 2 + …

 = 18

Average nodes expanded when
optimal path has length…

…4 steps …8 steps …12 steps

TILES 13 39 227

MANHATTAN 12 25 73

8 Puzzle III

§  How about using the actual cost as a
heuristic?
§ Would it be admissible?
§ Would we save on nodes expanded?
§ What’s wrong with it?

§  With A*: a trade-off between quality of
estimate and work per node!

Trivial Heuristics, Dominance
§  Dominance: ha ≥ hc if

§  Heuristics form a semi-lattice:
§  Max of admissible heuristics is admissible

§  Trivial heuristics
§  Bottom of lattice is the zero heuristic (what

does this give us?)
§  Top of lattice is the exact heuristic

Other A* Applications

§  Pathing / routing problems
§  Resource planning problems
§  Robot motion planning
§  Language analysis
§  Machine translation
§  Speech recognition
§ …

10

Tree Search: Extra Work!

§  Failure to detect repeated states can cause
exponentially more work. Why?

Graph Search

§  In BFS, for example, we shouldn’t bother
expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

Graph Search
§  Idea: never expand a state twice

§  How to implement:
§  Tree search + list of expanded states (closed list)
§  Expand the search tree node-by-node, but…
§  Before expanding a node, check to make sure its state is new

§  Python trick: store the closed list as a set, not a list

§  Can graph search wreck completeness? Why/why not?

§  How about optimality?

Graph Search

§  Very simple fix: never expand a state twice

§  Can this wreck completeness? Optimality?

Optimality of A* Graph Search
Proof:
§  New possible problem: nodes on path to

G* that would have been in queue
aren’t, because some worse n’ for the
same state as some n was dequeued
and expanded first (disaster!)

§  Take the highest such n in tree
§  Let p be the ancestor which was on the

queue when n’ was expanded
§  Assume f(p) < f(n)
§  f(n) < f(n’) because n’ is suboptimal
§  p would have been expanded before n’
§  So n would have been expanded before

n’, too
§  Contradiction!

Consistency
§  Wait, how do we know parents have better f-values than

their successors?
§  Couldn’t we pop some node n, and find its child n’ to

have lower f value?
§  YES:

§  What can we require to prevent these inversions?

§  Consistency:
§  Real cost must always exceed reduction in heuristic

A

B

G

3
h = 0

h = 10

g = 10

h = 8

11

A* Graph Search Gone Wrong

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4
h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1) C (3+1)

G (6+0)

S

A

B

C

G

State space graph Search tree

C is already in
the closed-list,
hence not
placed in the
priority queue

Consistency

3

A

C

G

h=4
h=1

1

The story on Consistency:
•  Definition:
 cost(A to C) + h(C) ≥ h(A)

•  Consequence in search tree:
 Two nodes along a path: NA, NC
 g(NC) = g(NA) + cost(A to C)
 g(NC) + h(C) ≥ g(NA) + h(A)

•  The f value along a path never
decreases

•  Non-decreasing f means you’re
optimal to every state (not just goals)

Optimality Summary
§  Tree search:

§  A* optimal if heuristic is admissible (and non-negative)
§  Uniform Cost Search is a special case (h = 0)

§  Graph search:
§  A* optimal if heuristic is consistent
§  UCS optimal (h = 0 is consistent)

§  Consistency implies admissibility
§  Challenge:Try to prove this.
§  Hint: try to prove the equivalent statement not admissible implies not

consistent

§  In general, natural admissible heuristics tend to be consistent

§  Remember, costs are always positive in search!

Summary: A*

§  A* uses both backward costs and
(estimates of) forward costs

§  A* is optimal with admissible heuristics

§  Heuristic design is key: often use relaxed
problems

69

A* Memory Issues à IDA*

§  IDA* (Iterative Deepening A*)

1.  set fmax = 1 (or some other small value)
2.  Execute DFS that does not expand states with f>fmax
3.  If DFS returns a path to the goal, return it
4.  Otherwise fmax= fmax+1 (or larger increment) and go to step 2

§  Complete and optimal
§  Memory: O(bs), where b – max. branching factor, s – search

depth of optimal path
§  Complexity: O(kbs), where k is the number of times DFS is called

Recap Search I
§  Agents that plan ahead à formalization: Search
§  Search problem:

§  States (configurations of the world)
§  Successor function: a function from states to

lists of (state, action, cost) triples; drawn as a graph
§  Start state and goal test

§  Search tree:
§  Nodes: represent plans for reaching states
§  Plans have costs (sum of action costs)

§  Search Algorithm:
§  Systematically builds a search tree
§  Chooses an ordering of the fringe (unexplored nodes)

12

Recap Search II
§  Tree Search vs. Graph Search
§  Priority queue to store fringe: different priority functions à

different search method
§  Uninformed Search Methods

§  Depth-First Search
§  Breadth-First Search
§  Uniform-Cost Search

§  Heuristic Search Methods
§  Greedy Search
§  A* Search --- heuristic design!

§  Admissibility: h(n) <= cost of cheapest path to a goal state. Ensures when goal node is expanded, no
other partial plans on fringe could be extended into a cheaper path to a goal state

§  Consistency: c(n->n’) >= h(n) – h(n’). Ensures when any node n is expanded during graph search the
partial plan that ended in n is the cheapest way to reach n.

§  Time and space complexity, completeness, optimality
§  Iterative Deepening: enables to retain optimality with little

computational overhead and better space complexity

