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CS 188: Artificial Intelligence 
 

Lectures 2 and 3: Search 

Pieter Abbeel – UC Berkeley 

Many slides from Dan Klein  

Reminder 

§  Only a very small fraction of AI is about making 
computers play games intelligently 

§  Recall: computer vision, natural language, 
robotics, machine learning, computational 
biology, etc. 

§  That being said: games tend to provide relatively 
simple example settings which are great to 
illustrate concepts and learn about algorithms 
which underlie many areas of AI 

Reflex Agent 

§  Choose action based on 
current percept (and 
maybe memory) 

§  May have memory or a 
model of the world’s 
current state 

§  Do not consider the 
future consequences of 
their actions 

§  Act on how the world IS 

§  Can a reflex agent be 
rational? 

A reflex agent for pacman 

§  While(food left) 
§  Sort the possible directions to move according 

to the amount of food in each direction 
§ Go in the direction with the largest amount of 

food 

Reflex agent 

4 actions: move North, East, 
South or West 

A reflex agent for pacman (2) 

§  While(food left) 
§  Sort the possible directions to move according 

to the amount of food in each direction 
§ Go in the direction with the largest amount of 

food 

Reflex agent 

A reflex agent for pacman (3) 

§  While(food left) 
§  Sort the possible directions to move according to the 

amount of food in each direction 
§  Go in the direction with the largest amount of food 

§  But, if other options are available, exclude the direction we 
just came from 

Reflex agent 
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A reflex agent for pacman (4) 

§  While(food left) 
§  If can keep going in the current direction, do so 
§  Otherwise: 

§  Sort directions according to the amount of food  
§  Go in the direction with the largest amount of food 
§  But, if other options are available, exclude the direction we just 

came from 

Reflex agent 

A reflex agent for pacman (5) 

§  While(food left) 
§  If can keep going in the current direction, do so 
§  Otherwise: 

§  Sort directions according to the amount of food  
§  Go in the direction with the largest amount of food 
§  But, if other options are available, exclude the direction we just 

came from 

Reflex agent 

Reflex Agent 

§  Choose action based on 
current percept (and 
maybe memory) 

§  May have memory or a 
model of the world’s 
current state 

§  Do not consider the future 
consequences of their 
actions 

§  Act on how the world IS 

§  Can a reflex agent be 
rational? 

§  Plan ahead 
§  Ask “what if” 
§  Decisions based on 

(hypothesized) 
consequences of 
actions 

§  Must have a model of 
how the world evolves 
in response to actions 

§  Act on how the world 
WOULD BE 

Goal-based Agents Search Problems 
§  A search problem consists of: 

§  A state space 

§  A successor function 

§  A start state and a goal test 

§  A solution is a sequence of actions (a plan) 
which transforms the start state to a goal state 

“N”, 
1.0 

“E”, 1.0 

Example: Romania 
§  State space: 

§  Cities 

§  Successor 
function: 
§  Go to adj city 

with cost = dist 

§  Start state: 
§  Arad 

§  Goal test: 
§  Is state == 

Bucharest? 

§  Solution? 

What’s in a State Space? 

§  Problem: Pathing 
§  States: (x,y) location 
§  Actions: NSEW 
§  Successor: update location 

only 
§  Goal test: is (x,y)=END 

§  Problem: Eat-All-Dots 
§  States: {(x,y), dot booleans} 
§  Actions: NSEW 
§  Successor: update location 

and possibly a dot boolean 
§  Goal test: dots all false 

The world state 
specifies every 
last detail of the 
environment 

A search state keeps only the details needed (abstraction) 
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State Space Graphs 

§  State space graph: A 
mathematical 
representation of a 
search problem 
§  For every search problem, 

there’s a corresponding 
state space graph 

§  The successor function is 
represented by arcs 

§  We can rarely build this 
graph in memory (so 
we don’t) 
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Ridiculously tiny state space 
graph for a tiny search problem 

State Space Sizes? 

§  Search Problem: 
  Eat all of the food 

§  Pacman positions: 
  10 x 12 = 120 

§  Food count: 30 
§  Ghost positions: 12 
§  Pacman facing: 

  up, down, left, right 

Search Trees 

§  A search tree: 
§  This is a “what if” tree of plans and outcomes 
§  Start state at the root node 
§  Children correspond to successors 
§  Nodes contain states, correspond to PLANS to those states 
§  For most problems, we can never actually build the whole tree 

“E”, 
1.0 

“N”, 1.0 

Another Search Tree 

§  Search: 
§  Expand out possible plans 
§ Maintain a fringe of unexpanded plans 
§  Try to expand as few tree nodes as possible 

General Tree Search 

§  Important ideas: 
§  Fringe 
§  Expansion 
§  Exploration strategy 

§  Main question: which fringe nodes to explore? 

Detailed pseudocode 
is in the book! 

Example: Tree Search 
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State Graphs vs. Search Trees 
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We construct both 
on demand – and 
we construct as 
little as possible. 

Each NODE in in the 
search tree is an 
entire PATH in the 
problem graph. 

Review: Depth First (Tree) Search 
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Strategy: expand 
deepest node first 

Implementation: 
Fringe is a LIFO 
stack 

Review: Breadth First (Tree) Search 
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Search 

Tiers 

Strategy: expand 
shallowest node first 

Implementation: 
Fringe is a FIFO 
queue 

Search Algorithm Properties 

§  Complete?  Guaranteed to find a solution if one exists? 
§  Optimal?     Guaranteed to find the least cost path? 
§  Time complexity? 
§  Space complexity? 
 

Variables: 

n Number of states in the problem 
b The average branching factor B 

(the average number of successors) 
C* Cost of least cost solution 
s Depth of the shallowest solution 
m Max depth of the search tree 

DFS 

§  Infinite paths make DFS incomplete… 
§  How can we fix this? 

Algorithm Complete Optimal Time Space 
DFS Depth First 

Search 
N N O(BLMAX) O(LMAX) 

START 

GOAL 

a 

b 

N N Infinite Infinite 

DFS 
§  With cycle checking, DFS is complete.*  

§  When is DFS optimal? 

Algorithm Complete Optimal Time Space 
DFS w/ Path 

Checking Y N O(bm) O(bm) 

…
b 1 node 

b nodes 

b2 nodes 

bm nodes 

m tiers 

* Or graph search – next lecture. 
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BFS 

§  When is BFS optimal? 

Algorithm Complete Optimal Time Space 
DFS w/ Path 

Checking 

BFS 

Y N O(bm) O(bm) 

…
b 1 node 

b nodes 

b2 nodes 

bm nodes 

s tiers 

Y N* O(bs+1) O(bs+1) 

bs nodes 

Comparisons 

§  When will BFS outperform DFS? 

§  When will DFS outperform BFS? 

Iterative Deepening 
Iterative deepening uses DFS as a subroutine: 
 

1.  Do a DFS which only searches for paths of 
length 1 or less.   

2.  If “1” failed, do a DFS which only searches paths 
of length 2 or less. 

3.  If “2” failed, do a DFS which only searches paths 
of length 3 or less. 
    ….and so on. 

Algorithm Complete Optimal Time Space 
DFS w/ Path 

Checking 

BFS 

ID 

Y N O(bm) O(bm) 

Y N* O(bs+1) O(bs+1) 

Y N* O(bs+1) O(bs) 

…
b

Costs on Actions 

Notice that BFS finds the shortest path in terms of number of 
transitions.  It does not find the least-cost path. 
We will quickly cover an algorithm which does find the least-cost path.   
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Uniform Cost (Tree) Search 
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Expand cheapest node first: 

Fringe is a priority queue 
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Priority Queue Refresher 

pq.push(key, value) inserts (key, value) into the queue. 

pq.pop() returns the key with the lowest value, and 
removes it from the queue. 

§  You can decrease a key’s priority by pushing it again 
§  Unlike a regular queue, insertions aren’t constant time, 

usually O(log n) 

§  We’ll need priority queues for cost-sensitive search methods 

§  A priority queue is a data structure in which you can insert and 
retrieve (key, value) pairs with the following operations: 
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Uniform Cost (Tree) Search 
Algorithm Complete Optimal Time (in nodes) Space 
DFS w/ Path 

Checking 

BFS 

UCS 

Y N O(bm) O(bm) 

…
b

C*/ε tiers 

Y N O(bs+1) O(bs+1) 

Y* Y O(bC*/ε) O(bC*/ε) 

* UCS can fail if 
actions can get 
arbitrarily cheap 

Uniform Cost Issues 
§  Remember: explores 

increasing cost contours 

§  The good: UCS is 
complete and optimal! 

§  The bad: 
§  Explores options in every 
“direction” 

§  No information about goal 
location Start Goal 

…

c ≤ 3 

c ≤ 2 
c ≤ 1 

Uniform Cost Search Example Search Heuristics 

§  Any estimate of how close a state is to a goal 
§  Designed for a particular search problem 
§  Examples: Manhattan distance, Euclidean distance 

10 

5 
11.2 

Example: Heuristic Function 

h(x) 

Best First / Greedy Search 

§  Expand the node that seems closest… 

§  What can go wrong? 
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Best First / Greedy Search 
§  A common case: 

§  Best-first takes you straight 
to the (wrong) goal 

§  Worst-case: like a badly-
guided DFS in the worst 
case 
§  Can explore everything 
§  Can get stuck in loops if no 

cycle checking 

§  Like DFS in completeness 
(finite states w/ cycle 
checking) 

…
b

…
b

Uniform Cost 

Greedy 

Combining UCS and Greedy 
§  Uniform-cost orders by path cost, or backward cost  g(n) 
§  Best-first orders by goal proximity, or forward cost  h(n) 

§  A* Search orders by the sum: f(n) = g(n) + h(n) 
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Example: Teg Grenager 

§  Should we stop when we enqueue a goal? 

§  No: only stop when we dequeue a goal 

When should A* terminate? 
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Is A* Optimal? 
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h = 7 

§  What went wrong? 
§  Actual bad goal cost < estimated good goal cost 
§  We need estimates to be less than actual costs! 

Admissible Heuristics 

§  A heuristic h is admissible (optimistic) if: 

 where             is the true cost to a nearest goal 
 
§  Examples: 

§  Coming up with admissible heuristics is most of 
what’s involved in using A* in practice. 

15 366 
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Optimality of A*: Blocking 
Proof: 
§  What could go wrong? 
§  We’d have to have to pop a 

suboptimal goal G off the 
fringe before G* 

§  This can’t happen: 
§  Imagine a suboptimal 

goal G is on the queue 
§  Some node n which is a 

subpath of G* must also 
be on the fringe (why?) 

§  n will be popped before G 

…

Properties of A* 

…
b

…
b

Uniform-Cost A* 

UCS vs A* Contours 

§  Uniform-cost expanded 
in all directions 

§  A* expands mainly 
toward the goal, but 
does hedge its bets to 
ensure optimality 

Start Goal 

Start Goal 

Example: Explored States with A* 

Heuristic: manhattan distance ignoring walls 
 

Comparison 

Uniform Cost 

Greedy 

A star 

Creating Admissible Heuristics 
§  Most of the work in solving hard search problems optimally 

is in coming up with admissible heuristics 

§  Often, admissible heuristics are solutions to relaxed 
problems, with new actions (“some cheating”) available 

§  Inadmissible heuristics are often useful too (why?) 

15 
366 



9 

Example: 8 Puzzle 

§  What are the states? 
§  How many states? 
§  What are the actions? 
§  What states can I reach from the start state? 
§  What should the costs be? 

8 Puzzle I 

§  Heuristic: Number of 
tiles misplaced 

§  Why is it admissible? 

§  h(start) = 

§  This is a relaxed-
problem heuristic 

8 Average nodes expanded when 
optimal path has length… 

…4 steps …8 steps …12 steps 

UCS 112 6,300 3.6 x 106 

TILES 13 39 227 

8 Puzzle II 
§  What if we had an 

easier 8-puzzle where 
any tile could slide any 
direction at any time, 
ignoring other tiles? 

§  Total Manhattan 
distance 

§  Why admissible? 

§  h(start) = 

3 + 1 + 2 + … 

          = 18 

Average nodes expanded when 
optimal path has length… 

…4 steps …8 steps …12 steps 

TILES 13 39 227 
 

MANHATTAN 12 25 73 

8 Puzzle III 

§  How about using the actual cost as a 
heuristic? 
§ Would it be admissible? 
§ Would we save on nodes expanded? 
§ What’s wrong with it? 

§  With A*: a trade-off between quality of 
estimate and work per node! 

Trivial Heuristics, Dominance 
§  Dominance: ha ≥ hc if 

§  Heuristics form a semi-lattice: 
§  Max of admissible heuristics is admissible 

§  Trivial heuristics 
§  Bottom of lattice is the zero heuristic (what 

does this give us?) 
§  Top of lattice is the exact heuristic 

Other A* Applications 

§  Pathing / routing problems 
§  Resource planning problems 
§  Robot motion planning 
§  Language analysis 
§  Machine translation 
§  Speech recognition 
§ … 
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Tree Search: Extra Work! 

§  Failure to detect repeated states can cause 
exponentially more work.  Why? 

Graph Search 

§  In BFS, for example, we shouldn’t bother 
expanding the circled nodes (why?) 
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Graph Search 
§  Idea: never expand a state twice 

§  How to implement:  
§  Tree search + list of expanded states (closed list) 
§  Expand the search tree node-by-node, but… 
§  Before expanding a node, check to make sure its state is new 

§  Python trick: store the closed list as a set, not a list 

§  Can graph search wreck completeness?  Why/why not? 

§  How about optimality? 

Graph Search 

§  Very simple fix: never expand a state twice 

§  Can this wreck completeness?  Optimality? 

Optimality of A* Graph Search 
Proof: 
§  New possible problem: nodes on path to 

G* that would have been in queue 
aren’t, because some worse n’ for the 
same state as some n was dequeued 
and expanded first (disaster!) 

§  Take the highest such n in tree 
§  Let p be the ancestor which was on the 

queue when n’ was expanded 
§  Assume f(p) < f(n) 
§  f(n) < f(n’) because n’ is suboptimal 
§  p would have been expanded before n’ 
§  So n would have been expanded before 

n’, too 
§  Contradiction! 

Consistency 
§  Wait, how do we know parents have better f-values than 

their successors? 
§  Couldn’t we pop some node n, and find its child n’ to 

have lower f value? 
§  YES: 

§  What can we require to prevent these inversions? 

§  Consistency: 
§  Real cost must always exceed reduction in heuristic 
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h = 10 

g = 10 

h = 8 
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A* Graph Search Gone Wrong 
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The story on Consistency: 
•  Definition:  
    cost(A to C) + h(C) ≥ h(A) 

•  Consequence in search tree: 
     Two nodes along a path: NA, NC 
     g(NC) = g(NA) + cost(A to C)  
     g(NC) + h(C) ≥ g(NA) + h(A) 

•  The f value along a path never 
decreases 

•  Non-decreasing f means you’re 
optimal to every state (not just goals) 

Optimality Summary 
§  Tree search: 

§  A* optimal if heuristic is admissible (and non-negative) 
§  Uniform Cost Search is a special case (h = 0) 

§  Graph search: 
§  A* optimal if heuristic is consistent 
§  UCS optimal (h = 0 is consistent) 

§  Consistency implies admissibility 
§  Challenge:Try to prove this.   
§  Hint: try to prove the equivalent statement not admissible implies not 

consistent 

§  In general, natural admissible heuristics tend to be consistent 

§  Remember, costs are always positive in search! 

Summary: A* 

§  A* uses both backward costs and 
(estimates of) forward costs 

§  A* is optimal with admissible heuristics 

§  Heuristic design is key: often use relaxed 
problems 

69 

A* Memory Issues à IDA* 

§  IDA* (Iterative Deepening A*)  

1.  set fmax = 1 (or some other small value) 
2.  Execute DFS that does not expand states with f>fmax 
3.  If DFS returns a path to the goal, return it 
4.  Otherwise fmax= fmax+1 (or larger increment) and go to step 2 

  
§  Complete and optimal 
§  Memory: O(bs), where b – max. branching factor, s – search 

depth of optimal path 
§  Complexity: O(kbs), where k is the number of times DFS is called 

 

Recap Search I 
§  Agents that plan ahead à formalization: Search 
§  Search problem: 

§  States (configurations of the world) 
§  Successor function: a function from states to  

lists of (state, action, cost) triples; drawn as a graph 
§  Start state and goal test 

§  Search tree: 
§  Nodes: represent plans for reaching states 
§  Plans have costs (sum of action costs) 

§  Search Algorithm: 
§  Systematically builds a search tree 
§  Chooses an ordering of the fringe (unexplored nodes) 
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Recap Search II 
§  Tree Search vs. Graph Search 
§  Priority queue to store fringe: different priority functions à 

different search method 
§  Uninformed Search Methods 

§  Depth-First Search 
§  Breadth-First Search   
§  Uniform-Cost Search 

§  Heuristic Search Methods 
§  Greedy Search 
§  A* Search  --- heuristic design!   

§  Admissibility: h(n) <= cost of cheapest path to a goal state.  Ensures when goal node is expanded, no 
other partial plans on fringe could be extended into a cheaper path to a goal state 

§  Consistency: c(n->n’) >=  h(n) – h(n’).  Ensures when any node n is expanded during graph search the 
partial plan that ended in n is the cheapest way to reach n.   

§  Time and space complexity, completeness, optimality 
§  Iterative Deepening: enables to retain optimality with little 

computational overhead and better space complexity 


