CS 188: Artificial Intelligence

Lectures 2 and 3: Search

Pieter Abbeel - UC Berkeley
Many slides from Dan Klein

Reflex Agent

- Choose action based on current percept (and maybe memory)
- May have memory or a model of the world's current state
- Do not consider the future consequences of their actions
- Act on how the world IS
- Can a reflex agent be rational?

Reminder

- Only a very small fraction of Al is about making computers play games intelligently
- Recall: computer vision, natural language, robotics, machine learning, computational biology, etc.
- That being said: games tend to provide relatively simple example settings which are great to illustrate concepts and learn about algorithms which underlie many areas of Al

A reflex agent for pacman

4 actions: move North, East South or West

Reflex agent

- While(food left)
- Sort the possible directions to move according to the amount of food in each direction
- Go in the direction with the largest amount of food

A reflex agent for pacman (2)

- While(food left)
- Sort the possible directions to move according to the amount of food in each direction
- Go in the direction with the largest amount of food

A reflex agent for pacman (3)

Reflex Agent	Goal-based Agents
- Choose action based on current percept (and maybe memory) - May have memory or a model of the world's current state - Do not consider the future consequences of their actions	- Plan ahead "Ask "what if" - Decisions based on (hypothesized) consequences of actions - Must have a model of how the world evolves in response to actions
- Act on how the world IS - Can a reflex agent be rational?	- Act on how the world WOULD BE

Search Problems

A search problem consists of:

- A successor function

- A start state and a goal test
- A solution is a sequence of actions (a plan) which transforms the start state to a goal state

What's in a State Space?

A search state keeps only the details needed (abstraction)

- Problem: Pathing
- States: (x, y) location
- Actions: NSEW
- Successor: update location only
- Goal test: is (x, y) $=$ END
- Problem: Eat-All-Dots
- States: $\{(x, y)$, dot booleans $\}$
- Actions: NSEW
- Successor: update location and possibly a dot boolean
- Goal test: dots all false

State Space Graphs

- State space graph: A mathematical representation of a search problem
- For every search problem there's a corresponding state space graph
- The successor function is represented by arcs
- We can rarely build this graph in memory (so we don't)

Ridiculously tiny state space graph for a tiny search problem

- A search tree:
- This is a what if tree of plans and outcomes
- Start state at the root node
- Children correspond to successors
- Nodes contain states, correspond to PLANS to those states
- For most problems, we can never actually build the whole tree

State Space Sizes?

- Search Problem Eat all of the food
- Pacman positions $10 \times 12=120$
- Food count: 30

Example: Tree Search

- Important ideas
- Fringe

Expansion

- Exploration strategy
- Main question: which fringe nodes to explore?

Search Algorithm Properties

- Complete? Guaranteed to find a solution if one exists?
- Optimal? Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?

Variables:

n	Number of states in the problem
b	The average branching factor B (the average number of successors)
C^{*}	Cost of least cost solution
s	Depth of the shallowest solution
m	Max depth of the search tree

- When is BFS optimal?

Iterative Deepening					
Itera 1. 2. 3.	deepen a DFS w th 1 or le " failed, ngth 2 or " failed, ngth 3 orand	g uses DFS ch only sear a DFS whi ess. a DFS whi ess. on.	as a subr hes for pa h only se h only se	of hes paths hes paths	
Algor		Complete	Optimal	Time	Space
DFS	w/ Path Checking	Y	N	$\mathrm{O}\left(b^{m}\right)$	$\mathrm{O}(b m)$
BFS		Y	N*	$\mathrm{O}\left(b^{s+l}\right)$	$\mathrm{O}\left(b^{s+l}\right)$
ID		Y	N^{*}	$\mathrm{O}\left(b^{s+1}\right)$	$\mathrm{O}(b s)$

Uniform Cost (Tree) Search					
Algorithm		Complete	Optimal	Time (in nodes)	Space
DFS	w/ Path Checking	Y	N	$\mathrm{O}\left(b^{m}\right)$	$\mathrm{O}(\mathrm{bm})$
BFS		Y	N	$\mathrm{O}\left(b^{s+l}\right)$	$\mathrm{O}\left(b^{\text {s+l }}\right)$
UCS		Y^{*}	Y	$\mathrm{O}\left(b^{C^{* / 7}}\right)$	$\mathrm{O}\left(b^{C^{* / 2}}\right)$
* UCS can fail if actions can get arbitrarily cheap					

Search Heuristics

- Any estimate of how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance

Best First / Greedy Search

- Expand the node that seems closest...

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Best-first orders by goal proximity, or forward cost $h(n)$

- A^{*} Search orders by the sum: $f(n)=g(n)+h(n)$

When should A^{*} terminate?

- Should we stop when we enqueue a goal?

- No: only stop when we dequeue a goal

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

A heuristic h is admissible (optimistic) if:

$$
h(n) \leq h^{*}(n)
$$

where $h^{*}(n)$ is the true cost to a nearest goal

- Examples:

366

- Coming up with admissible heuristics is most of what's involved in using A^{*} in practice.

Optimality of A*: Blocking

Proof:

- What could go wrong?
- We'd have to have to pop a suboptimal goal G off the fringe before G^{*}
- This can't happen:
- Imagine a suboptimal goal G is on the queue
- Some node n which is a subpath of G^{*} must also be on the fringe (why?)
- n will be popped before G

$f(n)=g(n)+h(n)$
$g(n)+h(n) \leq g\left(G^{*}\right)$
$g\left(G^{*}\right)<g(G)$
$g(G)=f(G)$
$f(n)<f(G)$

Example: Explored States with A*

Heuristic: manhattan distance ignoring walls

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, with new actions ("some cheating") available

- Inadmissible heuristics are often useful too (why?)

8 Puzzle III

- How about using the actual cost as a heuristic?
- Would it be admissible?
- Would we save on nodes expanded?
- What's wrong with it?
- With A^{*} : a trade-off between quality of estimate and work per node!

Trivial Heuristics, Dominance

- Dominance: $h_{a} \geq h_{c}$ if

$$
\forall n: h_{a}(n) \geq h_{c}(n)
$$

- Heuristics form a semi-lattice:
- Max of admissible heuristics is admissible

$$
h(n)=\max \left(h_{a}(n), h_{b}(n)\right)
$$

- Trivial heuristics

- Bottom of lattice is the zero heuristic (what does this give us?)
- Top of lattice is the exact heuristic

Other A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ...

Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work. Why?

Graph Search

- In BFS, for example, we shouldn' t bother expanding the circled nodes (why?)

Graph Search

- Idea: never expand a state twice
- How to implement:
- Tree search + list of expanded states (closed list)
- Expand the search tree node-by-node, but...
- Before expanding a node, check to make sure its state is new
- Python trick: store the closed list as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

Graph Search

- Very simple fix: never expand a state twice
function Graph-SEARCH (problem, fringe) returns a solution, or failure
closed \leftarrow an empty set
fringe $-\operatorname{Insert}($ Make-Node $(\operatorname{Initial}-S t a t e[p r o b l e m])$, fringe)
loop do
if fringe is empty then return failure
node \leftarrow Remove-Front (fringe)
if Goal-Test
if Goal-Test (problem, State[node]) then return node
if State[node] is not in closed then
add State[node] to closed
end
- Can this wreck completeness? Optimality?

Optimality of A* Graph Search

Proof:

- New possible problem: nodes on path to G^{*} that would have been in queue aren' t, because some worse n ' for the same state as some n was dequeued and expanded first (disaster!)
- Take the highest such n in tree
- Let p be the ancestor which was on the
 queue when n ' was expanded
- Assume $f(p)<f(n)$
- $f(n)<f\left(n^{\prime}\right)$ because n^{\prime} is suboptimal
- p would have been expanded before n '
- So n would have been expanded before n', too
- Contradiction!

Consistency

- Wait, how do we know parents have better f-values than their successors?
- Couldn' t we pop some node n, and find its child n ' to have lower f value?
- YES:

- What can we require to prevent these inversions?
- Consistency: $c\left(n, a, n^{\prime}\right) \geq h(n)-h\left(n^{\prime}\right)$
- Real cost must always exceed reduction in heuristic

Optimality Summary

- Tree search.
- A* optimal if heuristic is admissible (and non-negative)
- Uniform Cost Search is a special case ($\mathrm{h}=0$)
- Graph search:
- A^{*} optimal if heuristic is consistent
- UCS optimal ($\mathrm{h}=0$ is consistent)
- Consistency implies admissibility
- Challenge:Try to prove this.
- Hint: try to prove the equivalent statement not admissible implies not
- In general, natural admissible heuristics tend to be consistent
- Remember, costs are always positive in search!

Summary: A*

- A* uses both backward costs and (estimates of) forward costs
- A^{*} is optimal with admissible heuristics
- Heuristic design is key: often use relaxed problems

A* Memory Issues \rightarrow IDA*

- IDA* (Iterative Deepening A*)

1. set $f_{\max }=1$ (or some other small value)
2. Execute DFS that does not expand states with $f>f_{\text {max }}$
3. If DFS returns a path to the goal, return it
4. Otherwise $f_{\max }=f_{\max }+1$ (or larger increment) and go to step 2

- Complete and optimal
- Memory: $O(b s)$, where b - max. branching factor, s - search depth of optimal path
- Complexity: $O\left(k b^{s}\right)$, where k is the number of times DFS is called

Recap Search I

- Agents that plan ahead \rightarrow formalization: Search
- Search problem:
- States (configurations of the world)
- Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
- Start state and goal test
- Search tree:
- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)
- Search Algorithm:
- Systematically builds a search tree
- Chooses an ordering of the fringe (unexplored nodes)

Recap Search II

